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Abstract. The possibility of employing the maximum-entropy method to extract the particle 
size distribution from a multiple-small-aagle-scattering profile is examined. The xnsitivity of 
the method to the choice of different prior distribution conditions is investigated. The various 
maximum-enmpy-estimated results are compared with three model distributions, namely the 
log-normal, Weibull and Gaussian distributions for particle size. 

1. Introduction 

The characterization of particle size distribution (PSD) is very important in  small-angle 
scattering (SAS) studies dealing with materials science. The use of conventional SAS in. 
estimation of PSDs is limited to thin samples, a weak-scattering medium and particles with 
relatively small size. 

SAS data for many materials are affected by multiple scattering more often than is 
normally conceived. The influence of multiple scattering  in SAS data comes .from one or 
more of factors like strong contrast, long wavelength, large inhomogeneities and significant 
thickness of the sample-which cannot be reduced indefinitely for practical reasons. In 
SAS studies. multiple scattering can even be exploited [l] to study inhomogeneities that are 
much larger than is permitted by the resolution constraint of the instrument for conventional 
SAS. Further, since multiple scattering enhances the scattering signal, it is possible to make 
use of a weak source for SAS study if multiple scattering is suitably exploited. 

The extent of multiple scattering depends upon the thickness of the sample in relation 
&the scattering mean free path. It is possible to extract a single-scattering profile quite 
convincingly from multiple-scattering data for samples with thicknesses less than ten times 
the scattering mean free path. But when the thickness is larger than ten times the scattering 
mean free path, the particle size distribution can be estimated from the multiple-scattering 
data alone, avoiding the extraction of a single-scattering profile. In the present investigation, 
we are concerned with studies where the thickness of the sample is more than ten times the 
scattering mean free path. 

The particle size distribution can be conveniently extracted from a multiple-small- 
angle-scattering (MSAS) profile under the assumption of a model distribution. For real 
systems commonly used, model particle size distributions include the log-normal (LN), 
Gaussian (G) and Weibull (WB) distributions. The usefulness of variational techniques, in 
particular the maximum-entropy method [Z]. for data inversion is now being realized. It is 
worth mentioning some of the recent efforts which have exploited this technique to get an 
estimate of either the PSD [3-71 or the pair distrihution,function [8, 91 from conventional 
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SAS profiles. However, to our knowledge, the maximum-entropy technique has not been 
employed for obtaining an estimate of the PSD from MSAS profiles. The present paper is 
a step in that direction. 

2. Theory 

2.1. Scattering laws for multiple small-angle scattering 

In MSAS, the scattering laws are described [lo] in terms of a normalized density function 
F ( q )  g F ( q )  dQ = 1) where q denotes the wave-vector transfer. 

The angular distribution of the radiation, for a 6(q)  incident beam, passing through the 
sample is given [IO] by 

S ( q )  exp(-pL,Z - N) + (1  - e-? exp(-fi,Z)F(q) (1) 

where pa is the macroscopic absorption coefficient of the sample, N is the average number 
of SASS that the interaction radiation has undergone while passing through the sample, of 
thickness Z. For a monodisperse system of spherical particles of radius R and scattering 
length density D, N = 2npZA2D2R4 where p is the number density of the inhomogeneity 
of radius R in the sample, and A is the wavelength of the radiation. In the case of a 
polydisperse system, with degree of polydispersity n, N is given by 

n N=ZXZA~C~;D?R$ 
i = I  

where the subscripted quantities pi. D; and Ri are respectively the number density, scattering 
length density and radius of the ith type of particle. The fraction of the incident radiation 
absorbed in the sample is given by (1 - c-’’*~’). 

The differential scattering cross section S(q) of the sample is given by 

S(q) = A(l  - eWN)F(q) (3) 

where A is the area of the sample surface exposed to the incident beam. 
The differential scattering cross section S,(q) per unit volume of the sample is given 

by 

s,(q) = (1 - e-’%(q)/z. (4) 

For conventional SAS, since N X 0, 1 -e-’ % N ,  whereas for MSAS 1 - e-N w I since 
N >  1. 

Now let us consider the nature of the scattering profile for a polydisperse system. For 
the present discussion, we assume that the sample under study consists of a large variety of 
spherical scattering particles. The volume fraction of the ith type of particle in the sample 
is denoted by pi while rj and pd( are respectively its differential scattering cross section 
and macroscopic absorption coefficient. 

When the linear dimensions of the particles are negligible in comparison with the mean 
free path of the radiation inside the medium, it is possible [IO] to define an effective single- 
scattering cross section 1; pirj and absorption coefficient Ci pipai  for the medium. Such 
a polydisperse medium is termed a eflective medium. 

We will restrict our present discussion to scattering profiles for scattering from a 
polydisperse effective medium only. We assume that different particles have the same 
scattering length density contrast D. 
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2.1.1. The Guinier regime. The scattering profile in the Guinier regime is represented [ I O ]  
by 

(5 )  
2(R3)k2 

v - 0  lim FMsas(qj = 1S(R2)nZrAZD2 15(R2)Zrh2D2 
where r denotes the packing fraction of the sample. The above relation indicates that the 
information extractable from the Guinier regime for a MSAS profile from a polydisperse 
system is given by 

( R 3 ) / ( R 2 )  = C p ; R : / C p ; R :  (6) 
i i 

for a continuous distribution of particles. This fact has been verified [I] by experiment 
recently. 

2.1.2. The Porod regime. The scattering profile in the Porod regime is given by 

indicating that the nature of the information extractable from the Porod regime for the 
multiple-scattering profile is given by the ratio ( R 4 ) / ( R 2 ) .  

2.2. Particle sue distribution 

Now let us discuss how to obtain the particle size distribution p ( R )  from the information 
on moment ratios, namely, a ( R 3 ) / ( R 2 )  and b = ( R 4 ) / ( R 2 )  obtained from the MSAS 
profile. In the discussion to follow, we will express R in units of 1000 .& and hence it will 
be treated as a dimensionless quantity. 

As mentioned in the introduction, one way to obt& the particle size distribution is to 
employ a model distribution function involving a certain number of adjustable parameters. 
Among the commonly used model pmicle size distributions, the LN distribution is the 
simplest for analytical calculation purposes. The required moment ratios can be computed 
exactly. The function p"(R) is given by 

where Y and w are to be obtained from the moment ratio constraints 

(R?) / (R*)  = ~xP[(s/z)Y-' - W Y - ' ]  

( R 4 ) / ( R 2 )  = exp[6Y-'- 2wY-']. (10) 

(9) 
and 

We shall also explicitly describe the two other models often employed for the particle size 
distribution. The WB distribution is given by 

~ w B ( R )  = c(R/RoIh-' exp[-(R/Ro)'I (11) 

where c is the normalization constant and Ro and b are adjustable parameters. The G 
distribution is well known and is written in the form 

p d R )  = cexp[-(R - d / B 1 .  (12) 
Here c is the normalization constant and OL and ,3 are the model parameters, 
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R 
Figure 1. Estimatian of the panicle size disuibution p ( R )  from the assumed values of the 
moment ratios ( R 3 ) / ( R 2 )  = 1.62 and ( R 4 ) / ( R 2 )  = 2.1. Three model distributions-the log- 
normal. Gaussian and Weibull-are plotted along with the maximum-entropy distribution with 
g ( R )  = I .  

Now let us obtain the distribution which is statistically most probable-the maximum- 
entropy distribution. As the name suggests, it has a maximum entropy or uncertainty 
associated with it. This is obtained by maximizing a certain entropy functional subject to 
fixed moment ratios. In the present case where we assume a continuum of possible radii 
for the spherical particles the moment ratios are given by 

The Bayesian entropy functional of the distribution is given by 

S = - p ( R )  In[p(R)lg(R)l dR. (15) J 
where g(R) is the prior distribution-a default distribution in the absence of any constraints, 
that is, when we do not know the values of the moment ratios a and b. 

From the normalization condition of p ( R ) ,  we have 

p(R) dR = I. (16) 
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Figure 2. AS figure 1. but with g ( R )  = R 

It is convenient to express the constraints by the equations 

/ p ( R ) [ R 3  - aR2] dR = 0 (17) 

and 

/” p ( R ) [ R 4  - bRZ] dR = 0. 

Introducing Lagrange multipliers (01 - I), at and 012, for each of the constraints (16) , (17) 
and (18), we construct the functional 

+or, p ( R ) [ R 3  - aR2] dR + 012 p ( R ) [ R 4  - bR2] dR (19) s 
which can be maximized subject to arbitrary variation @ ( R )  in p(R). Following the 
standard procedure we obtain 

p ( R )  = g ( R )  exp(-a - q ( R 3  -OR’) - (r2(R4 - bR2)) .  (20) 

This is the maximum-entropy distribution. For a complete knowledge of p ( R )  we need 
to know the values of the Lagrange multipliers. From equations (16) and (20), we obtain 

01 = ln[/”g(R)exp(-it(R3 -aR2) -ci2(R4 - bR2))  dR]. (21) 



1.6 

Equation (21) expresses (Y in terms of (YI and (YZ. This is expected because (Y arises due 
to the simple normalization condition on p ( R ) .  To obtain the values of o(] and a2, we 
substitute the expression (20) for p ( R )  in equations (17) and (18) and obtain two coupled 
equations involving 011 and (YZ: 

3 s  
# I  

, I  
I C  

LN 
WB 

____.. - 
............ ~ 

G I ; ,:% _._I_._._ 

(R3 - aR2)g(R)exp(-orl (R3  - aRZ) - m2(R4 - bR2)) dR = 0 (22) r 
L m ( R 4  - bRZ)g(R)exp(-cq(R3 - a R Z )  - az(R‘ - bRz)) dR = 0. (23) 

It is to be noted that in the expression for p ( R ) ,  o(2 has to be positive, otherwise the 
The values of ( ~ 1  and ( ~ 2  are obtained by solving equations (22) and (23) numerically. 

distribution will diverge with increasing value of R. 

3. Numerical results and discussion 

We now consider a special case where the moment ratios have typical values a = 1.62 
and b = 2.7. These numbers are typical in the sense that they are close to actual numbers 
obtained from an experimental MSAS profile. 

First let u6 consider the model distributions given in section 2. We determine the 
adjustable parameters so that we get the above numbers for the moment ratios. Thus 
we have w = -2.4414 and Y = 5.933963 for the LN distribution, b = 5.67676 and 
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RO = 1.62628 for the WB distribution and a! = 1.51723 and p = 0.16139 for the G 
distribution. 

Along with these we also obtain the maximum-entropy estimate (WE) for the particle 
size distribution. Its determination, as seen in section 2, requires knowledge of the prior 
distribution function. In this regard the studies carried out in the literature so far do not lead 
to any unique answer-for the only prior knowledge one has is that any plausible particle 
size distribution function should vanish at R = 0 and also as R -+ 00. A prior distribution 
that is uniform over some range Ro < R < Rc and vanishing outside this range is often 
recommended. This is presumably done to ensure that the prior distribution is a proper 
(normalizable) distribution function. This restriction may, however, be relaxed [2]. Thus 
one may use an improper prior distribution function provided the eventual maximum-entropy 
distribution obtained therefrom is proper 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
R 

Fi@m 4. As figure 1. bur with g ( R )  = R3 

Our results for the MEE for various prior distributions are shown in figures 1 to 5. In 
each of these figures we have also plotted the three model distributions obtained above. In 
figure 1 we have the MEE p(R) for the choice g(R) = 1. It is seen that p(R) vanishes 
at large R as expected, but remains finite at R = 0. In figures 2, 3 and 4 we have shown 
results for different choices of g(R) = Rm, m = I, 2,3, all of which vanish at R =&and 
so do the corresponding MEE, which also vanish as R + 00. We have also obtained the 
MEE of p(R)  for g(R) = Re-R shown in figure 5. The prior distribution g(R) = Re-R 
itself has a peak at R = 1. This fact is reflected in the corresponding p(R) having two 
peaks. It is seen that the overall shape of the distribution is sensitive to the choice of a 
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Figure 5. As figure I ,  but with g ( R )  Re-*. 

prior distribution; however, the peak in the distribution does not seem to be so sensitive. 
We have computed the values of (R), (R2) and the value of the entropy S for the three 

model distributions and also for each of the MEEs. These results are summarized in table 
1. For convenience, the MEE corresponding to g(R) = Rm, m = 0, 1,2,3, is denoted by 
pm. and pr  denotes the MEE corresponding to g(R) = Re-R. It is clear from table 1 that 
among the three model distributions the WB has the largest entropy. There is also an overall 
closeness between the WB distribution and the MEE corresponding to g(R) = R 3 .  

Table 1. Values of (R) ,  (R?), the peak position md the entropy for the chree model distributions 
and for the maximum-entropy estimates with different prior distributions. 

Distribution Peak Entropy 
function (R) (R2) position S 

LN 1.53 2.41 1.47 0.18 
, . , , , . , . . , ,  , ,  , , , ~  ~ , , , .  

G 1.52 2.38 ~ 1.52 0.16 
WB 1.50 2.36 ~ 1.57 0.23 
141 1.23 1.89 1.66 0.52 
PI 1.44 2.23 ~ 1.64 , 0.39 
Pz 1.48 2.31 1.61 0.30 
P3 1.5 2.34 1.59 0.25 
P< 1.41 2.24 1.70 0.42 



Particle size distribution in multiple small-angle scattering 9745 

Model distributions with adjustable parameters are usually intended to fit the given set 
of data and reflect a kind of bias of the experimentalist. They can, however, also serve as 
testing grounds for any novel prescription such as the maximum-entropy method. In this 
latter role one assumes  that the exact real situation is described by, say, one of the LN. 
G or WB distributions with an assumed set of values for the adjustable parameters. This 
gives rise to an appropriate MSAS profile whose Porod and Guinier regime results lead to 
the moment ratios a = 1.62 and b = 2.1. With these moment ratios as input how does 
the MEE compare with the actual distribution? Figures 1 to 5 can be viewed from this 
perspective as well. One may also view the other two model distributions as model fits to 
the actunl distribution. In this respect, the MEE generally seems to be reasonably good if 
the actual distribution happens to be the WB, but not so good if reality is represented either 
by the LN or by the G distribution. 

For prior distributions of the form g(R) = Rm we find that the peak in the maximum- 
entropy distribution becomes more pronounced and it shifts towards smaller values of R as 
m increases. A similar trend in the shape of the peak, but a shift in the opposite direction 
is seen in a simpler analogous problem. Here one is required to obtain the different ME& 
for the probability distribution of a nonnegative random variate, which has the given mean 
value p, using the different prior distributions listed above. This problem can be solved 
analytically. The probability distribution has a peak at x = m p / ( m +  1). The peak becomes 
sharper and sharper and moves toward the value /* as m increases, and in the limit m + 00 

the distribution assumes the shape of a &function centred at x = p 

4. Conclusion 

We have discussed the methodology for extracting the particle size distributions from MSAS 
profiles using the maximum-entropy method. Three model distributions have been used for. 
comparison with the MEEs. We have noted that the maximum-entropy distributions strongly 
depend on the choice of prior distribution. The choice of prior distribution is an expression 
of bias. Among the three model distributions that we have examined the WB distribution 
is closer to the various ME& and is closest to the ME results obtained using the prior 
disbibution g ( R )  - R3,  In the absence of any concrete theoretical model for justifying 
the choice of any particular prior distribution, one must choose a uniform prior distribution 
that corresponds to the maximum entropy for the distribution function p(R).  It should be 
remembered that even with a uniform prior distribution the maximum-entropy estimate for 
p ( R )  does have a peak at a finite value of R. This value of R, being not so sensitive to 
any particular choice of prior distribution, can be treated with confidence. 

Finally, we have not considered possible error bars on the estimated moment ratios. 
It is possible to treat data with error bars within the framework of the maximum-entropy 
method; however, in the present paper the theme of interest was studying the sensitivity of 
ME& to different prior distributions. With this in mind, we have excluded error bars from 
the present considerations. 
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